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When a ferromagnetic fluid with a horizontal free surface is subjected to a uniform 
vertical applied magnetic field B,, it  is known (Cowley & Rosensweig 1967) that the 
surface may be unstable when the field strength exceeds a certain critical value B,. 
In this paper we consider, by means of an energy minimization principle, the possible 
forms that the surface may then take. Under the assumption that I,u - 11 < 1 (where 
,u is the magnetic permeability of the fluid), it is shown that when B, is near to B, 
there are three equilibrium configurations for the surface: (i) flat surface, (ii) stationary 
hexagonal pattern, (iii) stationary square pattern. Configuration (i) is stable for 
B, < B,, (ii) is stable for B, > B, and B, - B, sufficiently small, and (iii) is stable for 
some higher values of B,. In  each configuration the fluid is static, and the surface is 
in equilibrium under the joint action of gravity, surface tension, and magnetic forces. 
The amplitude of the surface perturbation in cases (ii) and (iii) is calculated, and 
hysteresis effects associated with increase and decrease of B, are discussed. 

1. Introduction 
In Cowley & Rosensweig’s ( 1  967) experiments a stationary wave pattern was ob- 

served on the surface of a ferromagnetic fluid subjected to a vertical magnetic field. 
The crests of the pattern formed a hexagonal array (in one test such an array trans- 
formed into a square array). A similar picture is well known in the context of thermal 
convection between two horizontal planes, where the velocity field divides into 
hexagonal cells (BBnard 1901). The explanations of the two phenomena are similar. 
While the magnetic field (or temperature gradient) remains small, a horizontal surface 
(or immobile fluid) represents the stable equilibrium state of the system. When the 
field (or gradient) grows and exceeds the critical magnitude at which this equilibrium 
becomes unstable, the surface takes a more stable form (or convection starts). For the 
theoretical calculation of the critical field (Frenkel 1935; Melcher 1963; Cowley & 
Rosensweig 1967) or temperature gradient (Rayleigh 1916; Pellew & Southwell 1940) 
the deviations from equilibrium may be assumed small and the equations may be 
linearized. Linearized equations are successful also for the calculation of the critical 
wavenumber but they are inadequate for the full description of either phenomenon. 
The symmetry of the developed wave array (hexagonal, square or, possibly, of some 
other form) and the wave amplitudes may be determined only from nonlinear equa- 
tions. For the calculations of wave amplitudes, nonlinear equations were used by 
Zaitsev & Shliomis ( 1  969) but for one-dimensional waves only. In a previous paper 
(Gailitis 1969) we showed that at  the critical field the main mode is the hexagonal 
array, but there was no attempt to determine the amplitude. 
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This article contains a more complete treatment of the problem. The method 
adopted is similar to that developed for the thermal convection problem by Palm 
(1960) and Segel & Stuart (1962). However, for the problem under consideration we 
use an energy variational principle rather than proceeding from the equations of 
motion. 

The following text contains four sections. In  $2,  the general form for the lowest 
terms in the potential energy expansion i3 established. In $ 3, the coefficients appearing 
in this expansion are calculated. In $4, the potential energy is minimized and the 
corresponding wave amplitudes are calculated. Depending on the field level, the 
energy minimum is given by one of three possible surface forms: unperturbed flat 
surface, square wave array and hexagonal wave array. The last type is described by 
the same solution as the hexagonal convection cell in the paper of Segel & Stuart 
(1962). We shall use a more general form for the surface equation than that used for 
the cell in the cited paper. Therefore another solution from this paper corresponds to 
an unstable equilibrium configuration of the surface. 

Finally $ 5 contains the conclusions and a discussion about hysteresis phenomena 
in transitions from one surface configuration to another. 

We may use the lowest terms in a power series instead of the exact expression if 
two conditions are satisfied: (i) the external field B, must be close to the critical 
value B, and (ii) the permeability p must be close to unity. Therefore the problem 
contains two small parameters, (p - and E = Bg/B: - 1,  and the phenomenon 
depends on the ratio e/(p - 1)2, which may be of any magnitude. 

All that is said about ferromagnetic fluid in a magnetic field applies also to the 
problem of a dielectric fluid in an electric field with one additional condition: the 
electrical resistance of the fluid must be high enough to prevent accumulation of free 
charges on the surface in the experimental time (observations in the opposite situation 
were reported by Taylor & McEwan 1965). 

2. Formulation 
Consider an infinite horizontal interface between an incompressible ferromagnetic 

liquid (p = constant > 1 )  and a vacuum (p = 1) in a vertical external magnetic field 
B, and gravitational field g. When B, = 0, the only stable equilibrium interface is a flat 
horizontal surface, which may be taken to be the x, y plane. The z axis is directed 
upwards (from liquid to vacuum). For the time being we suppose that the surface 
has an arbitrary form z = c(x, y), and we calculate the potential energy of the whole 
system (per unit area of the unperturbed surface): 

(1) 
1 B2(x,Y,Z)dz. 

a Y, Z) W Y )  = 8 P S Y 2 ( ~ ,  Y) + 4 1  + (grad a x ,  Y))214 + 1- 
The overbar denotes an average over the whole x, y plane: 

P ( x , y )  = lim 8-1 F(x,y)dxdy. 

The first term in ( 1 )  is hydrostatic energy (p is the density of the fluid), the second is 
surface energy (a is the surface tension) and the last term is the magnetic energy 
(if z < c(z, y) then p(x, y, z )  = p, otherwise p(x, y, z )  = 1). All the expressions may be 
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simplified if the energy 4 is measured in units of a and all linear dimensions in units 
of (alps)*. On this dimensionless scale the critical wavenumber is 1, and equation (1) 
may be rewritten as 

The surface [(x, y) is now represented as a superposition of M different ( K ~  9 f K~ 

if i + j) one-dimensional waves. This superposition is compiled from N main waves 
with critical (unit) wavenumbers = 1 , i  < N )  and from M - N  harmonics of 
these main waves (additional waves): 

M 

i= 1 
[(x, y) = Z a,, cos ( K ~ .  r + Si) 

N N 

i= 1 i= 1 
= uKi cos ( K ~ .  r + Si) + uZwi cos ( 2 ~ ~ .  r + 2 4 )  

+ x UKifKj COS ( (Ki f K j )  . r + Si 8j). (3) 
f i d b N  

1Kf f 91 * 1 
The two forms for [(x, y) show the choice of wave vectors and phases for the addi- 

tional waves. The directions of the main wave vectors for the time being are arbitrary 
with one exception: if there is any pair (i,j) of main waves with vector sum or difference 
equal to the unit vector ( I K ~  f K ~ I  = 1 )  then there must also be included among the 
main waves the wave with vector K ~ + K ~  (or with the opposite vector - K ~ T K ~ ) .  
Such a wave must not be included among the additional waves. The amplitudes of 
all the waves, the directions of the main vectors, the phases of the main waves, and 
the number N of terms in the sum (3)  are for the time being arbitrary. In $ 4  they will 
be varied to provide the minimum of @([). 

We have no explicit formula expressing @([) in terms of these quantities. Therefore 
we shall obtain an expansion of @([) as a series in powers of the wave amplitudes up 
to the square of the additional wave amplitudes and the fourth power of the main 
wave amplitudes inclusive. This expansion contains three functions, E(B,, I K I ) ,  K(8)  
and &(8), which will be determined in $3. For the moment, we simply state that the 
following form may be obtained by symmetry considerations alone (for details, see 
appendix) : 

N 

- c 

+ O(a$). (4) 

x [&(goo f e,, T 90") aKiaKjaKi;rj + +E(Bo, IKi rt ~ j l  ) 4 , * y I  
=k i < j S N  

I K i f  Kj I  =+ 1 

All results of the linear theory are contained in the function E(B,, 1 ~ 1 ) .  In a sub- 
critical field (B, < Bc),  E(Bo, I K I )  is negative for all K ,  and therefore the flat surface 
y = 0 is stable. In the critical field for the critical wavenumber ( 1  in our units), 

14-2 
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E(B,, 1 )  = 0 (for any other I K I  4 1 it remains negative) and the flat surface is neutrally 
stable. In stronger fields, E(B,, 1 )  is positive and the flat surface is unstable. 

We shall restrict attention to a range of fields close to the critical field; hence in the 
other functions K and Q and also in E(B,, 1.1) for I K I  + 1, the difference between B, 
and B, may be neglected and B, may be replaced by B,. 

The amplitudes of the additional waves appear in (4) only in the form 

- W B , ,  lKl l )  ail,, 

where 1 ~ ~ 1  4 1 and A, depends on the amplitudes of the main waves. This form per- 
mits immediate minimization with respect to the amplitudes of the additional wave8 
at  fixed values of the main amplitudes. Denoting this partly minimized difference 
a([) - @ ( O )  by &2C, we get 

where 

If Oij = 60°, the term with zero denominator E(B,, 1 ~ ~ -  ~ ~ 1 )  must be omitted in the 
last expression; if Oij = 120°, the term with denominator E(B,, I K i + K j l )  must be 
omitted. 

3. The perturbed magnetic field 
In  the expansion (a), the coefficients E ,  K and Q are independent of the phases. 

Therefore in calculating them, the phases may be set equal to zero (ai = 0). The first 
two terms in the energy (2) may easily be obtained in the form (4): for the first term 
only the average value need be calculated; for the second term, the square root 
must first be expanded in series. 

Transformation of the last term is more complicated, because the magnetic field 
B(x, y, z )  must be calculated. We may look for the field in the form 

B(z, y, 2) = &grad w, y, z) ,  

and we must satisfy the following conditions : 
(i) B(z,y,z)+B, as z+ foo ;  
(ii) divB = 0; 
(iii) the dependence of q5 on z and y should be similar to that of &,y) for the 

boundary conditions to be easily satisfied. For q5 there are two different expressions, 
one ($-) above the surface [(x, y) and another (#+) below it: 

M 

i= 1 
q5f = const* + z f b,f, exp ( f K~ z )  cos K ~ .  r. (7) 



Hexagonal patterns on th,e surface of a ferromagnetic JEuid 405 

The coefficients b$ are determined by the surface shape through the boundary 

a$+ a$- 
az az 

conditions 
$+ = p$-, - - - = (grad $+ -grad $-).grad y, 

The first condition follows from the continuity of the tangential component of p-lB, 
and the second from the continuity of the normal component of B.  These boundary 
conditions must be applied on the surface z = g(x, y). Therefore after substitution of 
(7), the exponents must be expanded in a series. After solving the equations we have, 
for i, j, 1 6 N ,  

p-l+pTl 
b* Ki =A[ p+1  aui+ 2 ( p + + )  i < l  x aUj aKl + 9f ]  9 

Y f x j f  U F O  

where 

These expressions are the leading terms of power-series expansions. The number of 

The integral in the last term of the energy ( 2 )  must be divided into two parts: 
terms written here is sufficient for the calculation of the functions E,  Q and K .  

After substituting (7 )  into these integrals it is easy to integrate over 2 .  At the limits 
f CQ the exponents vanish; at  z = [(x ,  y ) ,  they must be expanded in series. After 
averaging over x and y, we get the expansion (4) with the following coefficients: 

E(Bo, K )  = 8- Q(l - K ) ~ ,  e = Bi/BE - 1, (9% b )  

(9c) B: = 2 P O ( W ) t  (P + 1 )  (P - 

K(8) = sin3 Qe + 0 0 9 ~  $0 - & - -i C O S ~  0 
+ (p- 1 ) 2  (p+ I)-2 (2  -sin 48- cos 40- sin3 $0- C O S ~ ~ ) ,  (9d)  

~ ( e )  = (Iu - 1) (Iu + q-1p cos :e - cos2 $6). (9e) 

P o  = K O ) ,  Y = w- 1) (P+ (1% b )  

From (6) and (9) it follows that 

P(0) = sin3 $6 + cos3&0 -& - + cos2 8 + (p - 1)2 (p + 1)-2 

x { 1 - sin QO - cos &6’ - sin3 $0 - C O S ~  40 
- 3 sin2 B[( 1 - 2 cos + (1  - 2 sin $e)-z]l) if 0 + 60°, 120”, (1Oc) 

P(6O0) =,8(120°) = -%+$,/3+(-) P - 1  (is 1 - 3 7  =,/Q). 
P + 1  
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4. Various forms for the equilibrium surface 
Any extremum of the expression ( 5 )  corresponds to some equilibrium form of the 

surface. Maxima and saddle points correspond to unstable equilibrium, while minima 
correspond to stable equilibrium. To find these stable equilibria, we consider the 
equilibrium surfaces formed by one, two and three wave modes. 

4.1. Case N = 1 

The energy associated with one wave arl is 

If /3 < 0, then there is no minimum. 
The solution (11)  and the condition ,u < 3.535 .. ., which is equivalent to p(0)  > 0, 

were found in another way by Zaitsev & Shliomis (1969). In  fact the solution (11) 
represents an unstable surface, because within the wider class of two-wave distur- 
bances it corresponds to a saddle point of energy (see below). 

4.2. Case N = 2 

I n  the two-wave case it is convenient to  introduce two additional variables a and @ 
defined by aKl = a sin I+?, a,.. = a cos I+?. Then 

8@, = - &a2 + $[p(O) - sin2 2$(4p(O) - /3 (B12) ) ]  a*. (12) 

It is easy to see that the minima of the energy correspond to those angles BIZ 
for which the function p(&) is minimal. This function, as given by (lo),  is shown in 
figure 1 for various values of ,u. There are three possible minimum points: B,, = 60") 
go", 120". I n  fact 60" and 120" are not really minimum points but points of dis- 
continuity. There, the function p(S12) has a finite value [see (lo)] but in the limits 
8,,+ 60", 120°, i t  tends to minus infinity. The origin of this behaviour is in the formal 
separation of all waves into main and additional modes treated differently. At 
012 = 60°, a,.l-Kz is the amplitude of a main wave and in the energy expansion (5) is 
contained in the terms of all orders. At the same time, for a slightly different angle, 
aKl-K2 being the amplitude of an additional wave is excluded from (5), and the corres- 
ponding energy is included in the fourth-order term with a large coefficient. Therefore 
in the neighbourhood of 60" and 120" the expansion ( 5 )  is inconsistent but for the 
precise values 60" and 120" it is valid. The only complication a t  these angles is that 
three main waves must be treated together. This is done in the next subsection 

At B,, = 90" the function p(O,,) has a minimum only if ,u < 1.0902 ... .t p(90") is 
(§ 4.3). 

t This condition may not be formally treated as the existence condition for solution (14). For 
stability of the solution [(see 18)] the wave amplitudes must be finite (except in the limit 
1,u- 11 6 1) and any such condition is influenced by higher-order terms omitted in (4). 
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FIQTJRE 1. Angular dependence of the function b(0) [equation (lo)] for ,u = 1, 1-05, 1-07 and 1-1. 

then less than iP(0) (the value +P(O) for p = 1 is shown in figure 1 by the broken line) 
and so, for 8 > 0, the energy has the minimum value 

(1317 6&2,,,,, = - c2(2P(0) + 4P(9O0))-l = - 0 . 8 3 ~ ~  

for 8,, = 90" and sin22$ = 1.  This minimum corresponds to the occurrence of two 
perpendicular waves with equal amplitudes 

larll = layal = a/J2 = (P(O)+2P(9Oo))-4d = 1.289d. (14) 

The crests of such a superposition of two waves form a square array. 
The solution (1 1) corresponds to a = (a/P(O))*, O,, = 90" and sin2 2$ = 0. There 

the energy has a saddle point: as a function of a and eI2 it has a minimum but as 
a function of $ it  has a maximum. This means that the solution (11) is unstable 8s 
stated above. 

4.3. Case N = 3 

It was noted above that, for the system of three main waves with amplitudes a,, a, 
and a3 and wave vectors K,, K~ and K~ such that K, + K~ + K~ = 0, a special treatment is 
needed. In  this case the energy includes a third-order term involving the product of 
all three amplitudes: 

m3 = - &(a? +a; +a:) -ya,a2a3 cos 6 

+ t P ( 0 )  (a? + a: + at) + p( 120") (a;a; + a; a: + a:& 

f In  this and subsequent formulae, numerical values are given for the limit p -+ 1. 
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where 6 = 6, + S, + 6,. From (10) it follows that y > 0. Differentiation with respect to 
6 gives one of the equilibrium conditions: 6 = 0. The others are given by the three 
equations 

ea, + ya,a, - p(0) a: - 2P( 120") a,(.: + a:) = 0, 

€a2+ ya3a,-~(o)a~-2P(12~0)a2(a,2+a~) = 0, 

€a3+ y a , a , - ~ ( 0 ) a ~ - 2 ~ ( 1 2 0 ~ ) a , ( a 2 , + a ~ )  = 0. 
(15) I 

Defining T and W by 

T = b(0) +4,8(120°) = 1.0356, 

W = (8  -y2P(0)(P(O) - 2/Y( 120"))-,) (P(0) + 2P(12Oo))-' = 1.48s - 192*8y2, 

the system (15) gives four types of solution. 

minimum if e < 0. 
(I) Undisturbed surface, a, = a2 = a, = S42, = 0, which represents the energy 

(11) The solution (1  1),  

a, = almin, a2 = a, = 0, 6 9 ,  = Wlmin, 
which does not represent a minimum of the full energy. 

(111) Rectangular waves, 

a, = y/(2,8(120")-B(o)), a, = a, = W+, 
6 9 ,  = (4/!3(0))-1[-~+(4/P(120")-/3~(0)) W2] ,  

which do not represent a minimum of 642,. 
(IV*) Arrays of hexagonal waves: 

(16) 1 a, = a2 = a, = (y _+ (y2 + 4eT)+) (2T)--1, 

642, = - gea2, - yai + $Ta!. 

The solution IV- does not represent a minimum of &a3. 

IV+ does provide an energy minimum if 
Since, however, in the present problem, 2,8(120")-/3(0) = 0.049 > 0, the solution 

- (4T)- l  < e/y2 < 2(P(120°) +/3(0)) (2p(120")-p(0))-2, (17) 

or -0.241 < e/y2 < 410.26. 

[For the opposite case (2,4120") - P ( O )  < 0 )  the minimum condition (17) is different: 

Equations (15) also have some other solutions. All of them may, however, be ob- 
tained from I-IV by exchanging the positions of the amplitudes a,, a2 and a, and 
altering the signs of any two amplitudes simultaneously. 

Solutions I-IV are listed together with the stationary energies and conditions for 
minima. The two limits in (1  7) are calculated from the equation 

- (4T)-' < e/y2 < 00.1 

det (a26@,/aa,aaj) = 0. 

Instability for solutions I11 and IV- follows from the listed expressions for 8a8. 
On substituting y cos S in these instead of y for e > 0, it is easy to see that 6a8 as 8 

function of 6 has a maximum. For e < 0, solution I11 is meaningless, but for IV-, 
~ 3 % ~  has a maximum as a function of a,. 
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Note that solutions of the form I-IV were obtained previously by Segel & Stuart 
(1962) for hexagonal cells in thermal convection. They started from the equations of 
motion and obtained equilibrium equations equivalent to (15) with the same solu- 
tions. Their stability condition for IV+ is in agreement with (1 7) but their conditions 
for solutions 11, I11 and IV- differ from ours. Their stability criterion was found by 
assuming a2 = a3 and 6 = 0 and taking into account only coupling between three 
waves at an angle of 120" to one another. In  our problem, solution I1 is unstable 
with respect to the development of a perpendicular wave, but I11 and IV- are un- 
stable with respect to the variation of the phase 6. 

For solution IV+, the amplitudes are always greater than yl(2T).  This solution is 
valid for our problem only if the amplitudes are small. If this is not satisfied then the 
terms omithd from (4) must be taken into account. This provides a necessary condi- 
tion for the validity of the above analysis : y < 1, i.e. Ip - 1 I < 1.  

4.4. Stability of square and hexagonal arrays 

In $84.2 and 4.3 it was noted that, with respect to variations of particular waves, the 
square array is stable for 6 =- 0 and the hexagonal array under the condition (17). 
To investigate whether these arrays are stable with respect to other perturbations, 
we assume that there are n ( = 2 or 3) dominant main waves with equal amplitudes A 
and that the amplitudes of the other N-n main waves (perturbations) are much 
smaller (laKj] < A if n < j < N).  Defining a%,, as the energy of the dominant waves 
alone, from (5) we may obtain 

Kr*K j f a t =  0 

From this expression it follows that, under the condition (17), the hexagonal array 
is stable because no small perturbation can make the difference ~ 3 % ~  - cWn negative. 

For the square array the most important perturbation consists of two waves with 
equal amplitudes forming angles of 120" with one of the dominant waves. For 

q3/-' < (/3(0) + 28(90°)) (28(60") + 28(30°) - 28(90°) -B(O))-' = 7.438 

such a perturbation decreases the energy and transforms the square array into the 
hexagonal array. Otherwise the square array is stable and its amplitude 

is always Iarger than 
A = l a K i l  = laKpl  

Amin = (2P(6O0) + 2/3(30") - 2/?(90°) -P(O))-'y = 3.5167. 

This is N 7 times larger than the corresponding value yl(2T) for the hexagonal array. 
Therefore the condition Ip - 1 I < 1 is even more necessary for the square array than 
for the hexagonal one. 

5. Hysteresis 
The above analysis shows that the surface has three possible configurations of 

stable equilibrium: a flat surface, an array of hexagonal waves (16) and an array of 
square waves (14). The situation is illustrated by the sketch in figure 2 (the drawing 
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FIGURE 2. The three possible surface configurations corresponding to stable equilibrium. 

is made on a deformed scale). There, the largest deviation c(0,O) from a flat surface 
is shown as a function of E = Bi/BZ - 1 (more precisely [ ( O ,  O)/y is shown as a function 
of ~ y - ~  w (4p,,)--l (apg)-* (@-I?:)). The flat surface is represented by the E axis, the 
hexagonal array by the parabola jObcde, and the square array by the parabola Ohgf. 
The absolute minimum of energy is shown by a heavy line, a relative minimum by a 
light solid line, and an unstable equilibrium by a dashed line. 

The square array is represented by only one branch of the parabola Ohgf because 
the other (the symmetric one in the lower half-plane) represents the same surface, 
but relative to a different origin. 

The hexagonal array may be of many different types (see Christopherson 1940). 
The upper half-plane (curve Obcde) represents the array with one crest, two troughs 
and three saddle points in each elementary hexagonal cell. The lower half-plane 
(curve O j )  represents another type, with two crests, one trough and three saddle 
points in each elementary cell. In  stable equilibrium there is only the first type (line 
bcde). This result is in agreement with the observations made by Cowley & Rosensweig 
(1967). 

It is significant that for some values of 8 ( q - 2  < -0.24, 0 < ~ y - ~  < 7.438 and 
410.2 < ~ y - ~ )  the surface has one configuration of stable equilibrium, but at others 
( -  0.24 < ~ 3 / - ~  < 0 and 7-438 < ~ y - ~  < 410.2) it  has two such configurations. Which 
of these two configurations is actually realized depends on how the equilibrium is 
established. Hence hysteresis phenomena are to be expected.? 

Figure 2 allows us to follow the form of surface in a magnetic field which changes 
adiabatically with time, i.e. so slowly that the surface at any moment is in stable 
equilibrium, and undergoes a transition from one equilibrium state to another when the 
former becomes unstable. As the field grows, the surface follows the line - axOcdegf 
from the flat surface to the hexagonal array and then to the square array. As the field 

t This type of hysteresis is of course totally distinct from any ferromagnetic hysteresis inside 
the ferromagnetic particles forming the fluid. 
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decreases the surface changes in the opposite sequence, but by a different route, viz. 
fgMcba - CQ. The transition Oc from a flat surface to a hexagonal array occurs at the 
critical field (e  = 0 )  but, once formed, the hexagonal array remains stable in some sub- 
critical region and undergoes a transition ba back to the flat state only at  E = - 0 . 2 4 ~ ~ .  
In like manner, the transition eg from a hexagonal to a square array takes place at  
larger e than the opposite transition hd. 

In a field varying periodically in time, the system may describe two hysteresis 
loops aOcb and degh. Although in the figure they are drawn as having comparable 
magnitudes, they in fact differ by a factor of - 1660 (in the E direction). The possi- 
bility of observing both in one test seems unlikely because experimentally conflicting 
conditions would be necessary. 

For the transition eg to be as indicated, it must occur at  small wave amplitudes. 
Therefore the difference p-  1 must be small enough. To separate the transition Oc 
from ba, the difference p-  1 need not be so small, but E must be constant to a high 
degree over the whole surface. This calls for a very uniform magnetic field, and the 
smaller p - 1 is, the greater the need for uniformity. 

Appendix. Derivation of the formula (4) 

must be expanded in a series such that the boundary conditions on the surface 
To obtain the expansion in powers of a,, for the energy (2), first (i) the field B(x, y, z )  

M 

i= 1 
x = {(z, y) = c ayi cos (Ki . r + Si) 

are satisfied. Next (ii) the expansions for B(x, y, x )  and {(x, y) must be substituted 
into ( 2 )  and a non-averaged energy series produced. Finally, (iii) this series must be 
averaged over x and y. Before doing such a complicated calculation, it is possible to 
establish from symmetry alone what the averaged expansion (4) must look like. 

Although in $ 3  the more compact notation of (7) is used, the symmetry may more 
easily be seen if in steps (i) and (ii) the various series are written in the form 

] + ..., (A 1)  
M M  (cos ( K ~ .  r + Si) cos ( K ~ .  r + 8,) + x * * .  x C(Ki, " ' 9  Kj) a K i  \sin (Ki. + Si) ] x ... X U K . (  1 sin(wj.r+6,) 
i= l  j=l \-"-J 

< -Y- L Y---- J 

L L time6 

where all Lth-order terms are divided into a sufficient number of subterms that, in 
each, any aKi is accompanied by the one of two possible multipliers: cos ( K ~ .  r + Si) or 
sin ( K ~ .  r + Si). After averaging (A 1 )  there remain only terms for which 

It follows that (4) contains no first-order terms, and that second-order terms are 
represented by squares a:; only. There are two kinds of fourth-order term ( - aEia:* 
and - a",) and four kinds of third-order term: - a:ia2wi, N aKiaKjaKifrj, N a,ia,ja,i-,j 
and - a,,a aK2. The last is of greatest importance, and it appears if 

K i k  ... f K j  = 0. (A 2) 

Y 
K i  k K j  f Ki = 0. (A 3) 

The coefficients of the terms in (4) may be obtained only by direct calculation. 
However, from symmetry, E(B,, I K I )  at a: must depend on I K I  but not on the wave- 
vector orientation. K(e i j )  and Q(eij) depend only on the angle Bij between the two 
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unit vectors K~ and K ~ .  Symmetry arguments also determine the coefficients of ati 
and a2ia2ri as &K(O) and +&(O) and give the phase multiplier 

cos ( Si & 6, f 6,) (A 4) 

in the second sum in (4). [The two independent signs k in (A 4) are the same as the 
corresponding signs in (A 3)]. These three results follow from the following sine parity 
rule : 

For a scalar or the x component of a vector any term in the expansion (A 1) 
contains only an even number of sine factors (if any). The expansions for the 
x and y components of vectors (except wave vectors K ~ )  contain an odd number 
of sine factors. 

The source of this parity rule is the expression (3) for the scalar y, which contains 
only cosines. The parity rule is conserved in all operations used in steps (i) and (ii). 
There is no direct multiplication by K ~ :  all vectors are produced by differentiation, 
which changes one cos to sin (for instance, grad cos (K. r + 6 )  = - K sin (K. r + a)), or 
one sin to cos. Vectors are converted back to scalars by the second differentiation 
or by multiplication with another vector. In both cases sine factors are produced in 
even numbers. The parity is also preserved when the expansion is multiplied by a 
scalar, when exponents or roots are expanded, and when products of sine and cosine 
factors are expanded as a sum or vice versa. 

We must therefore average only products with an even number of sine factors. At 
third order we have two such products: 

I cos (q . r  + Si) cos ( K , . r +  &j) cos (K,. r + 6,) = 4 cos (ai k Sj k a,), 
K~ .K, cos (K$ .r  + Si)  sin (K, .r  + 6,) sin (q .r  + 6,) = +(K: -K:  - K;)  cos (ai f 6, k 6,) (A 5 )  

Both give the same multiplier (A 4) as in (4). In  (3) the phases of the additional waves 
are so related that for aziu2ri and uriuKjar. terms the coefficient (A 4) is equal to 1. 

The relation between the coefficients of u,.axj and atj may be established if only 
two waves url and ar, with 8,, < 1 are treated. In  all intermediate series a,. and awl 
must appear symmetrically, and the only acceptable form for the fourth-order energy 
terms is the following: 

@(4) = C,[url cos (K, . r + 6,) +ar, cos (K, . r + &,)I4 + C2[arl sin (K, . r + 6,) 

(if (A 3) is satisfied). 

+ ar2 sin(K, . r + S2)I4 

+ C3[aK1 cos (K, . r + 6,) + urz cos ( K ~ .  r + &,)I2 [arl sin (K, . r + 8,) 

+ a , , s i n ( ~ ~ . r +  62)]2+u~1u2,a0(842). 
Using the results 

cos2 (K, . r + 6,) cos2 (K,. r + 6,) = sin2 (K,. r + 6,) sin2 (K, . r + 6,) 

= 2 cos (K,. r + 6,) sin ( K 1 . r  + 6,) cos (K,. r + 6,) sin (K~. r + 6,) = 4, 
c o s 4 ( ~ . r + S )  = s i n 4 ( ~ . r + 6 )  = 3 c o s 2 ( ~ . r + 6 ) s i n 2 ( ~ . r + 6 )  = Q, 

it follows that 
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For any values of C,, C, and C, in the limit el, 3 0, the coefficient of a l  a:* is four 
times as large as the coefficient of a$. Similarly, the coefficient of a&a2wi may be 
found to be - iQ(0). 

These considerations are in full agreement with the results of direct calculation. 
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